Ensemble Learning Based Segmentation of Metastatic Liver Tumours in Contrast-Enhanced Computed Tomography

نویسندگان

  • Akinobu Shimizu
  • Takuya Narihira
  • Hidefumi Kobatake
  • Daisuke Furukawa
  • Shigeru Nawano
  • Kenji Shinozaki
چکیده

This paper presents an ensemble learning algorithm for liver tumour segmentation from a CT volume in the form of U-Boost and extends the loss functions to improve performance. Five segmentation algorithms trained by the ensemble learning algorithm with different loss functions are compared in terms of error rate and Jaccard Index between the extracted regions and true ones. key words: CT image, liver tumour, segmentation, ensemble learning, U-boost

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FDG-avid portal vein tumor thrombosis from hepatocellular carcinoma in contrast-enhanced FDG PET/CT

Objective(s): In this study, we aimed to describe the characteristics of portal vein tumor thrombosis (PVTT), complicating hepatocellular carcinoma (HCC) in contrast-enhanced FDG PET/CT scan. Methods: In this retrospective study, 9 HCC patients with FDG-avid PVTT were diagnosed by contrast-enhanced fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT), which is a comb...

متن کامل

The feasibility of direct treatment planning via contrast-enhanced computed tomography: an evaluation of dose differences based on the dimensional dose distribution comparison method

Background: We used a MapCHECK software-based dimensional dose distribution comparison method capable of evaluating point-to-point geometrical dose differences in volume to determine whether doses obtained from an enhanced computed tomography (CT)-based treatment plan, which better defines the target regions and organs at risk, differs from doses obtained from plain CT and then evaluated the fe...

متن کامل

Metastatic liver tumour segmentation from discriminant Grassmannian manifolds

The early detection, diagnosis and monitoring of liver cancer progression can be achieved with the precise delineation of metastatic tumours. However, accurate automated segmentation remains challenging due to the presence of noise, inhomogeneity and the high appearance variability of malignant tissue. In this paper, we propose an unsupervised metastatic liver tumour segmentation framework usin...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Feature Learning Based Random Walk for Liver Segmentation

Liver segmentation is a significant processing technique for computer-assisted diagnosis. This method has attracted considerable attention and achieved effective result. However, liver segmentation using computed tomography (CT) images remains a challenging task because of the low contrast between the liver and adjacent organs. This paper proposes a feature-learning-based random walk method for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 96-D  شماره 

صفحات  -

تاریخ انتشار 2013